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Abstract—Resource usage, in particular memory, is a critical
aspect of a system when analysing its performance and cor-
rectness. In this work, we explore the concept of a resource
interface for the memory resource. This concept is analog to
the semantic interface concept which is widely used in computer
systems conception and analysis as it is crucial for the concept
of abstraction. We propose a way to represent these interfaces
and how to extract them statically. We then explore how to apply
them to the serverless computing paradigm. Finally, we present
the prototype we built that is capable of extracting some basic
interfaces for a Python function. This prototype is meant to form
a basis for future development.

Index Terms—resource interface, static analysis, formal meth-
ods, serverless computing, Function-as-a-Service, memory usage

I. INTRODUCTION

Memory usage of programs is a critical metric to predict the
performance and correctness of the systems with which these
programs interact. Running out of memory leads often to a
crash of the program and the consequences of that crash can
be critical. Therefore, resource usage, in particular memory,
plays a crucial role in the correctness of some applications.

Semantic interfaces are the basis of abstraction in modern
programming. All library documentations contain the semantic
interfaces of the offered functions or objects. In addition, the
object-oriented paradigm is based on this concept. We argue
that this concept can be extended to resource interfaces.

These resource interfaces would be conceptually close to the
semantic interfaces but would express the resource usage with
respect to the input parameters and other variables if needed.
These interfaces are meant to be extracted statically (just as the
semantic interfaces are). In this project, we focus on memory
as the resource represented by these interfaces. The resource
interfaces format and challenges are discussed in the section
III.

In this report, we propose a use case for these interfaces: the
serverless computing paradigm. Serverless computing is an-
other name for Function-as-a-Service and is a cloud computing
paradigm in which the users do not manage the infrastructure
at all but only upload functions, the provider taking care of
the rest. A more detailed description of serverless computing
and the current state of the available solutions are exposed in
section II.

We think that serverless computing services would benefit
from the resource interfaces in several ways. This would allow
the users and the providers to know the memory usage of a
function (or at least an accurate estimation) without having to

execute it. This would help the scheduling of the functions as
well as the billing process and cost estimation. We develop
these points in detail in the section III-C.

II. BACKGROUND: SERVERLESS COMPUTING

A. Definitions

There is no formal definition for the concept of serverless
computing and the services it offers [1]. We however provide
the definitions proposed by Shafiei et al. in their review [1].

Function-as-a-Service (FaaS) is a paradigm in cloud com-
puting and is often what serverless computing refers to. FaaS
is a paradigm in which users run and manage functions without
managing the infrastructure [1].

Serverless computing can also refer to the Backend-as-a-
Service paradigm. In this paradigm, the unit the users access
in the cloud is an entire service, handling a specific task like
authentification or notification [1].

Neither FaaS nor BaaS requires any resource management
from the users. In the case of FaaS, the users only manage the
functions and the cloud provider takes care of provisioning the
machines, creating and removing instances of the functions,
and invoking them. In the case of BaaS, the users do not
even manage functions and have direct access to the complete
service.

In this report, when we talk about serverless computing,
we refer to FaaS. Here are the important characteristics of a
serverless service:

• The execution environment (e.g., Virtual Machines
(VMs), containers, Operating Systems (OSes)) and its
management is hidden from the users.

• The cloud provider provides auto-scaling service, i.e., the
resources are made available on demand.

• The billing mechanism only reflects what has been con-
sumed (i.e., pay-as-you-go).

• The provider handles the requests the best it can (i.e.,
best-effort policy)

• The basic elements are the functions. They are not
hidden from the provider, which knows their dependen-
cies, runtime environment, and state during execution.
The provider also sees the inputs and outputs of those
functions.

Let us now define what is a serverless application. A
serverless application is generally composed of two parts: the
client and the registered functions. The client sits in between
the end users and the FaaS provider: it invokes the functions
and translates their results into views. The registered functions
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are the functions uploaded to the FaaS provider: instances of
those functions are created or deleted by the provider to handle
requests sent by the client. This architecture is shown in Figure
1.

Fig. 1. Serverless application architecture example.

B. Market

The main providers for serverless computing services are
Amazon with AWS Lambda, Microsoft with Azure Functions,
and Google with Google Cloud Functions. Apache offers an
open-source platform called OpenWhisk. According to [2],
Auth0 was also offering a serverless computing service called
Webtask, but it was discontinued [3].

AWS Lambda is by far the most used, with more than 70%
of the surveyed companies using it in this survey by Datadog
[4]. It is followed by Azure Functions and Google Cloud
Functions with both around 55% of the surveyed companies as
customers [4]. According to [2], which is based on a previous
version of the Datadog report [4], in 2019, OpenWhisk and
Webtask were both used by 2% of the surveyed companies. It
also mentions that, in 2019, AWS Lambda was used by 96%
of the companies, Azure Functions by 6%, and Google Cloud
Functions by 4%. We can then see that even though AWS
Lambda is still the leader of the market, Microsoft and Google
are gaining in popularity. It is also interesting to point out that
AWS Lambda was the first of these services, introduced in
2014 [5]. Azure Functions followed in 2016, first in preview
since March with an official release in November [6]. Google
Cloud Functions was introduced in beta in 2016 and became
officially available in 2018 [7].

C. Opportunities

We now discuss why serverless computing offers an inter-
esting paradigm and in which cases it is preferable to other
computing paradigms according to Shafiei et al. [1].

The first and most obvious advantage of serverless comput-
ing is the absence of infrastructure management. Infrastructure
as a Service (IaaS) removed the hassle of physical management
of computing infrastructure. With this solution, however, the
management of virtual resources is still a time-consuming and
non-trivial operation. FaaS removes the management of re-
sources entirely, allowing the users to simply upload functions
to the platform, without having to think in terms of VMs or
containers.

Then, another benefit of this paradigm is affordable scal-
ability. As the user does not provide more than a function
to run, the service appears as a black box to the user and
thus the provider is free to optimise the resource utilisation
of its infrastructure. For the user, this means that the provider
provides scalability automatically by running the number of
instances needed for each function. For the provider, this
enables multiplexing of the resources as they are shared among
the users and managed entirely by the provider. Also, the
provider is free to use a more heterogeneous infrastructure, by
using older machines that would not be competitive as VMs
on the market. This more efficient utilisation of the resources
and the heterogeneity of the infrastructure are the main sources
of serverless computing affordability. It is however important
to note that serverless computing is not the most affordable
option for all applications: for some, renting some VMs is
cheaper.

Finally, this architecture enables functions to be shared in a
marketplace. Developers can indeed share their functions on a
marketplace like AWS Serverless Applications Repository [8].
This creates competition and with it an incentive to write better
code, with better documentation which is of course beneficial
for the users. These marketplaces also offer an interesting
application for our resource interfaces: having the resource
consumption of the function directly available to the user on
the marketplace would indeed help them make an informed
decision, especially concerning the price per request of the
function (as explained in section II-E and III-C).

D. Languages

Serverless computing services offer support for various
languages for developing functions. The complete list of the
languages supported by the main providers (Google Cloud
Functions, AWS Lambda, and Microsoft Azure functions) can
be found in table I.

Providers Languages
AWS Lambda Java, Go, PowerShell, Node.js, C#, Python,

Ruby
Google Cloud Functions Node.js, Python, Go, Java, Ruby, PHP,

.NET Core
Microsoft Azure Functions C#, Javascript (Node.js), F#, Java, Power-

shell, Python, Typescript (through JS)
Common Java, Javascript, Python, C#

TABLE I
SUPPORTED LANGUAGES IN SERVERLESS COMPUTING ENVIRONMENTS

[9]–[11].

The list of supported languages includes some without a
runtime environment but most of them have one. In practice,
the most used languages are Python and Javascript, as shown
by the survey by Datadog: over 90% of the surveyed com-
panies use Python and Node.JS for their serverless functions
[4]. In proportion of functions, 47% of the functions on AWS
Lambda are written in Python, and 39% in Node.JS [12].
So Python and Node.JS represent together 86% of all the
functions.

It is then clear that most of the functions running on FaaS
service rely on a language runtime environment, and therefore
our resource interfaces must take that into account.
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E. Pricing

An important aspect of serverless computing is its pricing.
We will not discuss the absolute price of the service as it is
dependent on the provider and changes over time; we will
focus on how the total price is computed.

First of all, the FaaS paradigm is built upon the ”pay-as-
you-go” concept. It is indeed one of the main advantages for
the users: they pay for executed functions, which means there
is no cost induced by an idle infrastructure. To explain the
billing method, we take the example of AWS Lambda but the
principles are the same for the other providers.

The basic cost formula is the following:

Cost =
∑
i=1

M × ti × P

where N is the number of requests, M is the memory
allocated to the function’s instance, ti for i = 1, ..., N is the
duration of execution of the ith request and P is the price for
1 GB-second.

We can observe that the price depends on M , which is the
amount of memory allocated to the function. In practice, the
providers require the user to fix M a priori. The providers
indeed do not perform any analysis or prediction for the
memory usage of a function: the user defines the amount of
memory that will be allocated to each instance of that function
and the provider allocates it. If the function exceeds the
allocated amount of memory, it is killed. Some providers emit
a warning if the amount by which it exceeded the allocated
memory is small enough.

Another interesting fact about this is the fact that the
computing resource depends on the amount of memory. The
performance of the CPU increases with the allocated amount
of memory. So, in the case of a function demanding on CPU
but not memory, the users must allocate more memory than
needed to get better computing performance.

With these two aspects in mind, picking a value for M
can become a challenge for the users. It is indeed non-trivial
to decide a priori how much memory a function will need,
especially given the nature of those functions. They are most
likely written in a language with a runtime environment (see
section II-D) and calling some external libraries.

To get an idea of the scale, as we are writing this report, the
current value of P on AWS Lambda is of $1.83334× 10−5.

F. Scheduling & allocation

Providers are discrete about their architectures and do not
reveal many details. According to Singhvi et al., [13], current
providers do not take the execution time of the functions into
account when scheduling them. It is also unclear whether
providers prioritise functions and, if they do, how.

Tariq et al. [14] performed measurements on the latency of
function requests and concluded that the providers were using
the FIFO policy. As the serverless platforms are black boxes,
we think these results are only indicative but they show that
the scheduling of the functions does not seem to obey complex
rules.

G. Applications

In this section, we give some examples of applications of
serverless computing.

The benchmarking suite SeBS proposed by Copik et al. in
[15] contains examples of serverless applications based on use
cases found in the literature. They classify their benchmarking
applications into different categories each containing a few
applications:

• Web applications
– Dynamic HTML: generates dynamic HTML from a

template.
– Uploader: uploads a file from a provided URL to

the cloud storage.
• Multimedia

– Thumbnailer: generates a thumbnail for a given
image. The input image is stored on the cloud storage
and the key is passed in the request.

– Video processing: adds a watermark onto a video
and generates a gif file of the result. The input video
is stored on the cloud storage and the key is passed
in the request.

• Utilities
– Compression: compresses a directory containing

files into a .zip file and uploads it to the cloud storage
returning the key for the user to download. The input
files are on the cloud storage too, the key is passed
in the request.

• Inference
– Image recognition: classifies the input image (on

the cloud storage with the key passed in the request)
using ResNet and Pytorch.

• Scientific
– Graph-Pagerank: generates a graph using the

Barabasi method with the size given in the request
and computes its PageRank.

– Graph-MST: generates a graph using the Barabasi
method with the size given in the request and com-
putes its Minimum Spanning Tree.

– Graph-BFS: generates a graph using the Barabasi
method with the size given in the request and per-
forms a Breadth-First-Search on it.

– DNA visualisation: gets a file from the cloud storage
corresponding to the given key and computes a
visualisation of the DNA sequence it contains. The
visualisation is stored back in the cloud storage.

The ”cloud storage” mentioned above depends on the cho-
sen service. In the benchmarking suite, it depends on the
provider on which the suite is run. For example, it is Amazon
S3 when running on AWS Lambda.

We can observe interesting properties of the typical server-
less functions from the source code of those. First, they are
small: in the order of 10 lines of code per function. Second,
they are mostly preparing the inputs (i.e., extracting parameters
from the request body, downloading files from the cloud
storage, ...) and calling external libraries to process them.
Some are using external executables called from Python like

3



ffmpeg for the video processing function. The executable is
downloaded from the web at the beginning of the function.

Netflix is an example from the industry that uses AWS
Lambda in their infrastructure (at least in 2014), to remove
polling and use declarative rules instead so that events trigger
computations [16]. They use it for the encoding of media files
for example. When a studio sends a media file to Netflix, the
processing pipeline first chops it up in chunks of 5 minutes.
All these chunks are then encoded in parallel. Once it is
done, the chunks are merged back together and the media file
is deployed for CDN (Content Delivery Network) use. This
process is well suited for serverless computing: each of the
functions from the chopping to the encoding can be stateless,
the instances can be spawned whenever a new file is received,
and the number of instances depends on the number of files
entering and their length. Also, all stages of this pipeline are
triggered by events (”a new file enters”, ”all chunks are ready”,
etc...) which is a good fit for this paradigm.

One last interesting point we observe in the functions we
analysed is the fact that these functions contain no loop. We,
therefore, argue that a significant portion of the serverless
functions does not contain loops.

H. Practical experience

We experimented with AWS Lambda and Google Cloud
Functions to get a sense of the workflow and do some
experiments on memory usage.

To test the memory consumption of the functions and see
how the service reacts when it exceeds the limit, we are using
a basic function computing the sum of integers from 1 to a
given n by first filling an array with all integers from 1 to n
and then computing the sum by iterating through that array.
The core of the function is the following:

i n t a r r a y = range ( n + 1)
sum = 0
f o r i in i n t a r r a y :

sum += i
re turn sum

The memory usage of this piece of code is largely domi-
nated by the array itself and thus depends directly on the value
of n. We can see the evolution of memory usage compared
to the evolution of the value of n, and this includes all the
environment. We can also observe what happens when the
value of n becomes too large and the memory usage exceeds
the allocated amount.

We are not interested in the absolute value of the amount
of memory, but in the trends and what happens at the limit.

Figure 2 shows the memory usage and the execution du-
ration of that function for different values of n. n varies
from 0 to 500’000’000 with increments of 200’000, with
40 requests for each. First of all, we can observe that for
n = 0, the amount of memory used is around 30MB which
is because of the Python environment and the container itself.
Then, we can see that the used amount of memory exceeds
the allocated amount (120MB) for some values of s. We can
see in the duration graph that after that point is reached (the

used memory exceeds the allocated amount), some requests
are dropped, but this is not systematic. This is probably due
to the variability of the memory used between runs, and also
possibly some AWS Lambda settings allowing some exceeding
under some conditions we do not know.

Another interesting fact we observed during our experimen-
tation is that the ”out-of-memory error” can be caught in the
Python code. The try-except construct can then be used
to gracefully fail or fall over to another computation path that
is less memory intensive.

III. MEMORY INTERFACES

In this section, we expose the memory interfaces as we
propose them in detail.

A. Representation

We propose to represent the memory interfaces as programs,
more specifically Python programs. The interface for a given
function would have the same signature as the original except
for the return type, which is now the amount of memory that
the function would demand if run with the given arguments.
The memory demand is defined as the memory the function
would request while running (for its heap, stack, global and
local state, etc...) but this amount could be different from the
actual amount of memory allocated by the OS (due to different
mechanism, e.g., page swap). This memory demand amount
does not take the Garbage Collection mechanism into account
and so it is the sum of all memory the function will allocate,
without recollection.

The advantages of the code format for the interfaces are
the following. First of all, the interface is readable by both
humans and machines. The code can indeed be run easily and
developers are used to reading code so if the output code is
runnable and small enough, it would fit both cases. Second,
the code format is modifiable by a developer with reasonable
effort. Third, as the structure of the input function and the
interface format are close, it helps the automatic extraction.

B. Extraction

As it is one of the most used programming languages in
general and the most used in particular for serverless com-
puting, we develop our memory interfaces for Python. Python
is an interpreted language with an intermediate bytecode to
which the interpreter dynamically compiles the code before
executing it. The standard implementation of Python, CPython,
is implemented in C and Python. Python typing system is
dynamic, which means that variables do not have a fixed type,
but it is also strong, which means that an operation called
on an object of a wrong type would fail (as opposed to the
interpreter trying to make sense of the operation on the given
object anyway). A lot of Python libraries are also written in
other languages like C or C++ for performance reasons.

The complexity of the environment, the heterogeneity of
the libraries’ source languages, and the typing system are
presenting some challenges to analyse statically the memory
consumption of a Python program.
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Fig. 2. Memory usage and average duration of calls to the sum of integer function on AWS Lambda. The function was called with n ∈
{0, 200′000, 400′000, ..., 5′000′000}, with 40 requests for each n.

To tackle these challenges, we propose a hybrid approach
to the analysis. We would use static analysis for the frequently
modified code (i.e., user-written functions) and we would rely
on learning (i.e., based on running traces) for the less fre-
quently modified part (i.e., the environment, the libraries, ...).
With this setup, we can leverage static analysis to compute the
interface without running the function and tackle challenges
posed by the presence of the environment.

Concretely, we would extract the call graph of the analysed
function (lazily meaning we do not necessarily have the entire
graph computed). Then, we would statically analyse the calls
performed by the function and create a symbolic formula of
the memory demand conditioned by the input arguments of
the function and other variables this amount depends on. At
each level of the tree, the analysis continues by calling the
interfaces of the called functions recursively. We would stop
this analysis at a given depth, returning a symbolic formula
for the memory demand.

The execution traces would be used to compute memory
usage distribution for function calls. Once these distributions
are available, they can be used as concrete values for the
symbolic variables in the formula.

By using learning only at a given depth of the graph, we
would need traces only for the common code among different
applications like the standard library or popular libraries like
numpy or scypy. For these functions, the traces can be obtained
by serverless computing providers. The amount of traces
would therefore be big and therefore the distributions have
a better chance to be accurate.

For this reason, we argue that learning from data does not
make sense at the top-level function (i.e., the user’s function)

as it would require executing the function to get traces and
getting enough of them would take a non-negligible amount
of time.

Resource and performance interfaces have a major differ-
ence from semantic interfaces: the broken abstraction. The
resource usage, just like the performance, depends on more
parameters than the function arguments. Iyer et al. call them
PCVs for Performance Critical Variables [17] so, in our work,
we will use the name MCVs for Memory Critical Variables.
With semantic interfaces, the implementation details are ab-
stracted away behind the interface, which makes reasoning
about a component easier. With resource usage interfaces, this
is not possible anymore, as resource usage heavily depends on
the implementation details. We thus need to include these as
variables in the symbolic memory demand formula.

The formula can be used as is, without replacing the MCVs
with concrete values. This can be sufficient for the developers,
as it can give insight into what affects the memory demand
and how it affects it (e.g., linearly, exponentially, ...). In
the cases where this is not sufficient, we need to take the
workload of the program into account. From this workload,
probability distributions for these variables can be extracted
and we can use these distributions and the formula to compute
a distribution for the memory usage. For some MCVs, we
might need to collect actual execution traces, for example,
if they depend on the underlying systems. For others, the
workload known a priori might be sufficient, for example, the
amount of data a query to a database will return can be known
approximately if the structure of that database is known in
advance.
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C. Application: serverless computing
We propose different aspects of serverless computing that

our memory interfaces would improve.
The first aspect is the configuration and the billing process.

As explained in the section II, currently the user has to decide
a priori the amount of memory that will be allocated to the
function. This amount, in addition to being critical for the
correctness of the system, is conditioning the cost of the
function. For the user, determining the minimum required
amount is a really difficult task, and therefore the temptation
of over-provisioning is high, leading to overpriced function
executions.

If our memory interface is integrated directly into the upload
process of the function by the provider, it would release the
user from the burden of deciding the memory amount. The
memory demand of the function would automatically be stored
as the memory to allocate to an instance and to provide
an accurate cost estimate to the user. The user could then
accept or rewrite the function to either use less memory to
make the cost go down or improve performance if the cost
is within her budget. Even if the interface is not integrated
by the providers to upload process directly, it can still be
used by the users locally (or as a stage of a Continuous
Integration (CI) pipeline) to guide the development and to
enter an accurate memory provision when uploading to their
serverless computing platform.

The second aspect is indicating the memory demand of
functions directly in the marketplaces. As explained in the
section II, most serverless computing providers offer a market-
place for users to share and download functions. We propose
to add the memory interface to the upload pipeline so that a
potential user exploring available functions directly gets their
memory demand and therefore the cost of these functions’
execution. This would enable the developers to offer different
versions of the same functionality with different performance-
cost trade-off choices.

IV. RELATED WORK

Interfaces for systems, and resource interfaces in particular,
have been studied notably by T. Henzinger and L. de Alfaro,
later joined by A. Chakrabarti.

In Interface Automata [18], they propose a modeling lan-
guage to describe system components. They propose to use
these models to validate, verify, and document system compo-
nents. They also propose a way of combining these interfaces
and a definition of compatibility for components, based on the
combination of their interfaces.

The proposed modeling describes the temporal externally
observable behaviours of a component (i.e., what other com-
ponents it calls and when it either gets or sends information).
These models are represented as automata, with the externally
observable behaviours as transition labels. There are two types
of transitions: either the component receives a new input and
thus transitions to a new state, or the transition is taken directly
and this symbolises the component sending an event to the
outside environment.

Let us take an example. A component has a method msg
which sends a message and returns either ok or fail. This

component internally uses a communication channel that offers
a method send which can return either ack or nack. The
component tries to send the message and, if it receives a
nack, retries once and then returns the result. The interface
automaton for that component is represented in figure 3. If no
transition labeled with a particular input goes out of a state,
this input is illegal if the automaton is in that state. Illegal
inputs represent the assumption about the environment, i.e.,
the component assumes that the environment would not send
an illegal input.

Fig. 3. Interface automaton for the component sending a message with retry
[18].

The composition of two components’ interfaces is defined as
the product of their automata C1⊗C2 for two given automata
C1 and C2.

The definition of compatibility of 2 components that Hen-
zinger and de Alfaro propose is an optimistic compatibility.
This means that 2 components are considered compatible if
there exists an environment that makes them work together,
i.e., which does not send illegal inputs. This is opposed to a
pessimistic compatibility which would state that 2 components
are considered compatible only if all possible environments
would send only legal inputs. In the automaton representation,
this means that the combined automaton can contain illegal
states. The environment would make these states unreachable
by not sending illegal commands. In this report, we omit the
formal definition as well as the algorithm used to compute and
prove this compatibility.

The justification for such an optimistic definition is that
the developers can use some components together in an
environment known to be helpful. There is therefore no reason
to declare these components as incompatible.

A. Chakrabarti et al. propose to apply these interface
automata to resource usage in Resource Interfaces [19]. The
formalism and the modeling language are similar but are now
used to model the resource requirements of a given component.
In this case, resources they consider include energy, memory,
network bandwidth, and more.

They propose some algebra to work on those automata.
Examples of questions that these interfaces and algebra can
answer are: ”Can two given components work together without
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exceeding the energy stored in the battery?” or ”Can two given
components work together without exceeding the peak power
available on the device?”.

To answer those questions, the interfaces are seen as a game
between two players: input and output. Intuitively, at each state
the player input chooses a combination of input variables that
respects the input assumptions. Then, the player ouput chooses
a combination of the output variables that respects the output
conditions (i.e., the interface). This produces a run, i.e., a
sequence q0, (v

i
0, v

o
0), q1, (v

i
1, v

o
1) where qk is a state of the

automaton and vik and vok are the input and output variables
combination. Properties and invariants can then be computed
on this run. In this report, we omit the formalism and the
algorithms.

An important point to note about these interfaces is that they
are extracted by hand. This means that such an interface is a
model of a component, written by hand by the developer of the
system. Interesting and useful properties can be computed with
them but we argue that for our use case and for verification, it
is better to extract these interfaces automatically and statically.
This improves the ease of use and the trust we can have in
these interfaces.

Other pieces of work explore memory usage static analysis.
Kim et al. [20] propose a technique to statically analyse a

C program to determine its dynamic memory usage to find
vulnerabilities. The first step of their analysis is to extract
the flow of memory allocation at the source code level.
Each variable receives a size (depending on its type) and a
life duration (i.e., the scope for local variables and between
malloc and free calls for pointers). Then they propose that
existing techniques like Call Flow analysis can be used. The
second step is the static prediction of the dynamic memory
usage by analysing this flow extracted in the first step.

Braberman et al. [21] estimate an upper bound of the
dynamic memory usage of Java programs. They build a tool
to compute a formula representing the quantity of memory
allocated by a method as a function of its parameters. Their
experimental results show that their tool estimates precisely
the amount of memory in most of the cases and is a close
approximation in the other cases, between 0% and 5% error
with 4 methods for which the error is 10%, 21.1%, 22.22% and
36.2% respectively. This does not take the Garbage Collector
(GC) into account and so the memory amount is the sum of
all allocated objects size, without taking into account the fact
that the GC (Garbage Collector) is recovering the memory of
inaccessible ones.

Albert et al. [22] propose a way to give better estimations,
taking the GC activity into account. They propose to param-
eterise the GC to give an estimation closer to reality, without
assuming a particular GC model. The parameterisation is done
on the lifetime of the objects (i.e. when they are eligible
for collection). The produced estimation can then be used in
different scenarios and is sound at least for the following two:
when the GC collects objects as soon as they become available,
and when the GC collects eligible objects when the heap size
reaches a certain limit (which is then the upper bound of the
memory usage that the tool would output). The first scenario is
interesting from a theoretical point of view, while the second

is realistic.

V. CURRENT PROTOTYPE

In this section, we expose the prototype we developed and
how it works.

A. Scalpel framework

To implement our prototype, we use the Scalpel framework
[23]1. Scalpel is a framework built to serve as a basis for
static analysis tools for Python. It offers different modules
to manipulate or analyse Python code. The list of modules
includes a type inference module, an alias analysis module,
a module to perform constant propagation, and a call graph
generation module for example.

In this project, we use the control-flow graph (CFG)
construction module which can extract the control flow of
a Python program. For example, the CFG of the function
handler shown in figure 4 is shown in figure 5. The
produced CFG is a Directed Graph in which each vertex
contains a block of the code with its statements, link(s) to
the next block(s), and the condition of this(these) branch(es)
is any.

Fig. 4. A example Python function.

def h a n d l e r ( e v e n t : d i c t [ s t r , Any ] ) :
x = f ( )
y = g ( )
i f x > 0 :

z = h ( )
e l s e :

z = i ( )
i f y > 0 :

w = j ( )
e l s e :

w = k ( )
re turn w + z

While developing our prototype, we discovered a bug
in the library: when called on a piece of code contain-
ing a try-except-finally construct, the code in the
finally block and after was ignored. For example, the piece
of code in figure 6 was generating the CFG shown in figure
7.

As we can see, the finally block does not appear in the
CFG, nor does the return statement.

We opened a PR2 to correct the bug and the patch will be
added to the next release.

B. Sympy

To represent the memory demand as a symbolic formula, we
use the Sympy library3. This library is a symbolic mathematics
library. In our case, we only need to create free variables and

1https://github.com/SMAT-Lab/Scalpel
2https://github.com/SMAT-Lab/Scalpel/issues/98
3https://www.sympy.org/en/index.html
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Fig. 5. CFG of the handler function in figure 4.

Fig. 6. A example Python function with a try-except-finally con-
struct.

def f ( ) :
t r y :

a = open ( ” t e s t . t x t ” , ” r ” )
v = a . r e a d ( )
a . c l o s e ( )

e xc ep t I O E r r o r :
v = ” i o E r r o r ”

e xc ep t :
v = ” o t h e r E r r o r ”

f i n a l l y :
a = 123

re turn v + s t r ( a )

Fig. 7. CFG of a function with try-except-finally construct before
patching the Scalpel module.

create a formula with these variables and basic operations like
additions.

The resulting formula can be later analysed by a process-
ing tool. The library indeed offers various operations to be
performed on formulas like getting the list of free variables,
computing derivatives, and more. For example, computing the
derivative with respect to a free variable (i.e., a function called
in the analysed function) can be used to determine how calling
this function affects the final memory amount (i.e., linearly,
quadratically, ...).

C. Prototype

We develop a prototype that can extract a memory interface
for a given function, exploring the call graph with a maximum
depth of 1 (as explained in the section III-B). Given a Python
function, our tool constructs another Python function which
is the memory interface itself. This function returns a sympy
formula which is a sum of free variables, representing the
functions called in the original function. The interface function
has the same control-flow structure as the original program so
it returns a different formula for each path. In some cases, the
function has to take more arguments than the original function
because of the MCVs, as explained in the section III-B. Indeed,
the branch conditions of the original functions can depend on
variables different than the arguments of the function (e.g.,
local computations, values returned by some function calls,
...). So for the interface to be runnable, we need to take these
variables as arguments. The interface function then takes as
arguments the same arguments as the original function along
with all variables that appear in a branch condition (removing
duplicates).

We now go through the extraction step by step.
First of all, the tool extracts the CFG of the function

using Scalpel. Then it extracts from the CFG a recur-
sive structure of the blocks. We indeed need to recover
the program structure in this form to be able to correctly
recreate the indentation in the new program. For exam-
ple, the CFG in the figure 5 would have the structure
[3, ([4], [6]), 5, ([7], [9]), 8]. The struc-
ture is a list of block ids with a tuple for each branch. The tuple
contains the list corresponding to the branch(es), recursively
defined. For now, we do not support CFG in which a block
has more than 2 exits or in which there are loops.

Then the tool constructs a new Python AST object for the
interface function. This construction is done recursively. For
each block, the tool extracts the functions called in the block. If
there are multiple levels of calls (i.e., calls of the form f()()
with two or more levels), the tool adds one variable per level
(e.g., for f()() two variables are added, ’f(...)’ and
’f(...)(...)’). The tool then adds a statement for each
of these variables, adding them to an accumulator variable.

Once the AST for the body of the interface is ready, the tool
extracts the list of variables appearing in branch conditions and
constructs a function definition AST node.

The new function is then written to a file.
As an example, the interface for the function handler in

figure 4 can be seen in figure 8.
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Fig. 8. The memory interface of the function handler in figure 4.

def h a n d l e r i n t e r f a c e ( even t , x , y ) :
mem demand = 0
mem demand += sp . symbols ( ’ f ( . . . ) ’ )
mem demand += sp . symbols ( ’ g ( . . . ) ’ )
i f x > 0 :

mem demand += sp . symbols ( ’ h ( . . . ) ’ )
e l s e :

mem demand += sp . symbols ( ’ i ( . . . ) ’ )
i f y > 0 :

mem demand += sp . symbols ( ’ j ( . . . ) ’ )
e l s e :

mem demand += sp . symbols ( ’ k ( . . . ) ’ )
re turn mem demand

VI. LIMITATIONS

The prototype tool that we propose is not useful in itself at
that stage. It represents a starting point to develop such a tool.
It poses the basis such as the structure, the methodology, and
the libraries to use.

It, therefore, has several limitations. First of all, and most
importantly, it explores only one depth of the call graph,
which reduces its practical usage. Then, it does not perform
analysis on the MCVs and simply adds them as arguments.
However, in some cases, some MCVs can be computed from
the input arguments. For example, they could correspond to
values extracted from a dictionary received as arguments. Also,
it ignores completely the arguments passed to the functions
called. Finally, it does not add any learning capabilities, there-
fore, only does the first part of the analysis, i.e., constructing
the symbolic formula containing the function called.

VII. CONCLUSION

In this work, we explored the idea of an interface to
represent the memory usage of a function. We explored the use
cases of such an interface, how it should be represented, and
how to extract it. To achieve that, we review the literature on
this topic, and the available commercial serverless computing
services.

We then developed a proof of concept that is meant to be
used as a starting point to develop a tool for extracting such
interfaces.
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