
Verifying a Realistic Mutable Hash Table

Case Study (Short Paper)

Samuel Chassot[0009−0000−9751−9252] Q and Viktor Kunčak[0000−0001−7044−9522]

EPFL, Switzerland
samuel.chassot@epfl.ch, viktor.kuncak@epfl.ch

Abstract. In this work, we verify, using the Stainless program verifier,
the mutable LongMap from the Scala standard library, a hash table using
open addressing within a single array. As an executable specification, we
write an immutable map based on a list of tuples and verify it against
the mathematical definition of a map. We then show that LongMap’s op-
erations correspond to operations of this association list. To express the
resizing of the hash table array, we introduce a new reference-swapping
construct in Stainless. This allows us to apply the decorator design pat-
tern without introducing aliasing. Our verification effort led us to find
and fix a bug in the original implementation that manifests for large hash
tables. Our performance analysis shows the verified version to be within
a 1.5 factor of the original data structure.

Keywords: Formal verification · Hash table · LongMap · Scala.

1 Introduction

With the improvements in effectiveness and expanding user base of proof as-
sistants such as Isabelle/HOL [22] and Coq [27], we are witnessing systematic
verification of many purely functional data structures. The verification of these
data structures is highly effective using those tools. In the Scala language ecosys-
tem, such verification efforts were carried out using the Stainless verifier [13] and
its predecessor Leon [19]. However, verification of mutable data structures re-
mains more challenging. As an example for hash table validation on the JVM
platform, a recent attempt [8] provided a proof with interactive steps and an in-
complete proof based on bounded model checking for one function. We consider
such efforts very valuable. At the same time, our verification led us to discover
a bug that bounded model checking would have likely missed due to the large
arrays required. This illustrates the limitations of bounded checks and the need
for complete formal verification.

In this work, we verify a data structure from the Scala standard library: the
mutable LongMap[V], a hash table with keys of type Long and values of a generic
type V, implemented with open addressing (with all data stored in the arrays).
We verify it using Stainless, a verification framework for a subset of Scala. To our
knowledge, this is the first verified mutable map in Scala and the first verified
hash table with open addressing and non-linear probing. Our implementation

2 S. Chassot, V. Kunčak

closely follows the existing implementation of the Scala library [26], which was
implemented with efficiency in mind and withstood the test of usability. This
is the fastest hash table implementation we know of in the Scala ecosystem.
Our experience helped us further assess the use of Stainless for imperative code,
following recent verification of the QOI compression algorithm [5] and file system
components [12]. Our paper includes the following contributions:

1. As the key result, the adaptation and full formal verification of the mutable
LongMap of the Scala standard library [26] using Stainless [13,20]; this hash
table can serve as a basis for other verified project; our code and the SMT
queries generated during verification are available on Zenodo [6];

2. A reference implementation of a map verified against the mathematical def-
inition of a map and lemmas for reasoning about such maps. This map is
realized as a sorted list of tuples. We use it as an executable specification for
LongMap and find that it supports automated and inductive reasoning better
than the built-in maps of Stainless;

3. Introduction into Stainless of an operator for swapping references, which
increases the expressive power of Stainless while preserving non-aliasing,
allowing us to implement the resizing and balancing of the hash table;

4. An evaluation of the performance of both LongMap implementations (orig-
inal and verified) and the mutable HashMap of the Scala standard library
(unverified), showing that the performance of the verified implementation
remains competitive despite the changes introduced to simplify verification.

1.1 Related Work

Hash tables have been of interest in verification from the early days of the field.
Guttag [11] explores the use of algebraic specifications for reasoning about hash
tables, though without formal connection to executable implementations. A hash
table is one of the case studies [17] in the Jahob verification system [18,29]. The
version in Jahob does not use open addressing but separate chaining with linked
list buckets. Furthermore, that case study uses, as an unverified assumption,
the fact that the hash function is pure (total, without side effects, terminating,
and deterministic). The Eiffel2 project offers a collection of verified data con-
tainers, impressive by its diversity [23]. They implemented and verified a hash
table implementation using chaining. These containers are, however, simpler in
their implementations than what appears in Scala and Java standard libraries.
We could not explore this collection in more depth because the tools used are
unavailable. De Boer et al. verified JDK’s IdentityHashTable, based on open
addressing and linear probing, in their case study [8]. The verification was done
using KeY [1] and JJBMC [4], both accepting JML specification. They notably
did not manage to provide a deductive proof for the remove method and one of
its auxiliary methods, but instead used bounded model checking for a map of
up to four elements. The KeY deductive proofs required interactive steps for the
more complex methods, up to 1’655 for the put method. Hance et al. also pro-
posed techniques to verify distributed systems interacting with an asynchronous

Verifying a Realistic Mutable Hash Table 3

environment, in particular file systems [14]. In this work, they developed and
verified a hash table with open addressing and linear probing in Dafny. They
implemented two versions of the hash table, one immutable and one mutable.
This separates the functional correctness and correct heap manipulation proofs
but requires implementing the hash table twice.

2 LongMap: from Scala Library to Stainless

A LongMap[V] (called LongMap in this work) is a data structure implementing a
map behavior with keys of type Long (signed 64-bit machine integers) and values
of generic type V. The mutable LongMap of the Scala standard library [26] is a
hash table employing open addressing and non-linear probing.

We implement a subset of the original LongMap interface (outlined in Section
3). This subset corresponds to the functions implementing the map functionality
(we omit functions specific to the Scala collections hierarchy). The apply func-
tion returns the value stored for a given key or a default value if absent. The
remove, update (to add/update pairs), and repack (to resize/balance the map)
functions return a Boolean value indicating the operation success.

The keys and values are stored in two arrays called _keys and _values

respectively. Both are of size N = 2n for some 3 ≤ n ≤ 30. The index of a given
key is computed using a hash function. The corresponding value is stored in the
second array at the same index as its key. We define mask = N − 1.

There are 2 special values in _keys: 0 and Long.MinValue. The value 0

indicates a free spot while Long.MinValue is a tombstone value, indicating that
a key was removed at this spot.

We use open addressing with non-linear probing to resolve collisions. Follow-
ing the original Scala implementation [7,26], the probing function is indexx+1 =
(indexx + 2 ∗ (x+ 1) ∗ x− 3) & mask, resulting in cubic index growth. Our ver-
ification is independent of the particular probing function but checks that the
implementation is pure (i.e., deterministic, total, terminating, and without side
effects), free of runtime errors, and returns an index within range.

All operations rely on two elementary ones: 1) looking for a key (seekEntry),
and 2) looking for a key or an empty spot (seekEntryOrOpen). These two op-
erations use non-linear probing, with the special values 0 and Long.MinValue

in _keys. As an example, update(k: Long, v: V) starts out by computing
i = seekEntryOrOpen(k). If k is at index i, it writes _values(i) = v; if the
function returns an open spot, it writes _keys(i) = k and _values(i) = v.

2.1 Adapting for verification

Next, we present the changes we made to the original code to comply with the
supported subset of Scala, improve the SMT solver performance, make writing
specifications easier, and simplify termination checking.
Tail recursion (to ease verification). We replace while loops with tail-
recursive functions. Stainless can perform this transformation internally, but we

4 S. Chassot, V. Kunčak

have better control over specifications if we manually transform the source. For
example, using a loop invariant makes having different pre- and post-conditions
impossible. The Scala compiler transforms tail-recursive functions back to loops
during compilation, so no performance is lost.
Loop counters (to prove termination). We introduce a counter and a
condition that stops while loops (implemented as tail recursion) in seekEntry

and seekEntryOrOpen after a fixed number of iterations. We need this counter
as we do not know whether this probing function covers the space of all indices.
Moreover, it allows the proof to be agnostic to the probing function. It has a
negligible impact on performance, as shown in Section 4.
Data representation (for SMT performance). The original implementa-
tion uses the MSBs (Most Significant Bits) of the index returned by the seeking
functions to indicate whether the index points to the key, a 0, or a tombstone. We
replace this with some ADT for better code readability and improved verification
experience, as bitwise operations are often slow in SMT solvers.
Typing and initialization of arrays (to comply with subset). In the orig-
inal implementation, the array storing values (_values) is an Array[AnyRef],
containing null by default, and using casts to store and access values. In our
verified implementation, _values contains boxed values because Stainless does
not support nulls, and the Array.fill function (used to instantiate new arrays)
does not support generically typed arrays. The boxing is implemented using case
classes (i.e., ADTs).
Refactoring (to ease verification). We split the implementation into two
classes, following the decorator design pattern (DP), as detailed in Section 3.1.

3 Specification and Verification

We first implement ListLongMap, an immutable map backed by a strictly ordered
list of pairs (Long, V), and verify it against the mathematical specification of a
map. It serves as the executable specification of the mutable LongMap. We thus
specify the mutable LongMap as behaving as the corresponding ListLongMap. A
ghost method map() (not executed at runtime) of LongMap returns an instance
of ListLongMap with the same content and is used in contracts. For example,
update is specified as follows: old(this).map() + (k, v) == this.map(). Fig-
ure 1 shows the LongMap interface and specification. Postconditions, expressed
using ensuring calls, are lambda functions taking the return value as parameter
(i.e., res). The method valid is the data structure representation invariant stat-
ing, among other things, that the inserted elements can be found when searching
subsequently using the same probing function. Table 1 shows the lines of code
for the program, specification, and proofs for both maps.

3.1 Decorator Design Pattern for Modular Proofs

Following the decorator DP, we split the LongMap implementation into two
classes to better modularize the proof. First, LongMapFixedSize implements

Verifying a Realistic Mutable Hash Table 5

def contains(key: Long): Boolean = { ...
} ensuring (res ⇒ valid && (res == map.contains(key)))
def apply(key: Long): V = { ...
} ensuring (res ⇒ valid &&

(if (contains(key)) res == map.get(key).get
else res == underlying.v.defaultEntry(key)))

def update(key: Long, v: V): Boolean = { ...
} ensuring (res ⇒ valid &&

(if (res) map.contains(key) && (map == old(this).map + (key, v))
else map == old(this).map))

def remove(key: Long): Boolean = { ...
} ensuring (res ⇒ valid && (if (res) map == old(this).map − key

else map == old(this).map))
def repack(): Boolean = { ... } ensuring (res ⇒ !res || map == old(this).map)

Fig. 1. Mutable LongMap interface and specification (note that we omit preconditions
in this figure which are only checks of the invariant (valid), if any).

the LongMap specification depicted in Figure 1 without resizing (with arrays of
a given fixed length). Then, we implement the LongMap class as a decorator of
LongMapFixedSize. It implements the same interface and adds the resizing op-
eration (repack function). Being a decorator, this class forwards all operations
to an underlying instance of LongMapFixedSize except for the repack function.
A key observation about the original implementation of repack is that it works
very similarly to the update function to insert all pairs. Only some checks are
omitted because the array is assumed to be fresh (containing no tombstone values
and, initially, no keys). This observation allows us to use update to implement
repack without significantly impacting the performance, while simplifying the
proof.

3.2 Swap Operation for More Expressive Unique Reference

As discussed in Section 3.1, the LongMap class relies on an underlying instance of
the LongMapFixedSize class. The underlying instance must be replaced by a new
one during calls to repack. The repacking process first computes the new array
size, then creates a new instance of LongMapFixedSize with this size, inserts
all pairs, and finally replaces the current underlying instance with this new one.
Aliasing appears during this replacement, yet Stainless disallows it. We can,
however, observe that there is no need for aliasing because the reference to the
newly created instance is not accessed after the replacement. We thus introduced
a swap operation [15] into the Stainless verifier. In addition to array element
swap [12], Stainless now offers a Cell class that encapsulates a mutable variable
and offers a swap operation to swap the content of two cells. This construct
enlarges the expressiveness of Stainless without the need for aliasing and enables
the implementation of a resizable data structure on top of a fixed-size one.

6 S. Chassot, V. Kunčak

Class Program LOC Proof+spec. LOC Total LOC

ListLongMap 156 678 834
MutableLongMap 409 7’358 7’767

Table 1. Lines of code for program, as well as specification and proof. We use many
ghost functions to express induction proofs. When a function has many arguments, we
typically typeset each argument on a separate line, contributing to line counts.

3.3 Finding and Confirming a Bug in The Original Implementation

During the verification, we discovered that the repack function does not satisfy
the specification stated in its documentation. The documentation states that
the map can accommodate up to 230 values (preferably not more than 229) [25].
However, a number of keys greater than or equal to 228 makes repack loop
forever. The bug arises in the computation of the new mask and is an integer
overflow: a mask candidate is reduced while it is > _size * 8 (where _size

is the number of keys stored in the array). However, if _size * 8 overflows,
i.e., _size ≥ 228, the mask candidate is reduced below _size. The new array
then cannot accommodate all the keys. We fix the bug by modifying the loop
condition and then prove that the function always returns a large enough and
valid mask. Despite the small scope hypothesis [16] and claims in [8], we do not
expect that bounded model checking would have discovered this bug, given that
it occurs only after inserting so many key-value pairs.

3.4 SMT queries

Stainless generates verification conditions (VCs) which are solved by Inox [28]
using SMT solvers (here, CVC4 [3], cvc5 [2], and Z3 [9]) and incremental function
unrolling. So, a sequence of calls to SMT solvers happens for each VC and solvers
run in parallel in a race. Generated SMT queries [6] use algebraic datatypes and
sets. They do not contain set-logic directive. Only the query corresponding to
the winning solver is recorded for each VC, as the others might be incomplete.
Stainless uses generalized arrays [21] with non-constant default values to encode
generic arrays among other things. This feature is unavailable on CVC4 and not
implemented in Stainless for cvc5. Hence, VCs using it can be solved only by
Z3. This partially explains why Z3 is solving most queries (Figure 2 (right)).

4 Evaluation

We run the benchmarks on an Ubuntu 20.04.6 LTS server with an Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80GHz, 64GB RAM.

Verification takes around 400 seconds when running from scratch (around
100 seconds when re-running with a populated verification-condition cache [10]).
Figure 2 shows the VCs solving time (with cache completely disabled). Most VCs
are solved quickly, with a mean and a median of around 0.16 and 0.1 seconds,

Verifying a Realistic Mutable Hash Table 7

0 5 10 15 20 25 30
Distribution of Solving Times (s)

100

101

102

103

104
Nu

m
be

r o
f V

Cs

z3 trivial cvc5 cvc4
100

101

102

103

104

Fig. 2. Left: VC solving time distribution with Stainless cache disabled. Right: number
of queries solved by each solvers. Both use a logarithmic scale.

0 2 4 6 8
N 1e6

1.0

1.2

1.4

1.6

1.8

2.0

Ti
m
e

Verified
Original
Opti
HashMap

0 2 4 6 8
N 1e6

1.0

1.5

2.0

2.5
Ti
m
e

Verified
Original
Opti
HashMap

Fig. 3. Lookup of N keys in a map prepopulated with 222 pairs (left) (time normalized
per operation) and insertion of 222 pairs (initial capacity of 16) followed by lookup of
N keys (right). Horizontal lines show the average. The black vertical lines show 222.
The error bars show the 95% CI. The time on the y-axis is normalized with respect to
the first data point of the original map.

respectively. The cumulative solving time is 1’937 seconds. Only 3 VCs need
more than 10 seconds in Stainless, with one VC capping at 29 seconds out of
12’122 VCs. When calling the solver directly on the generated SMT-LIB files,
the cumulative solving time falls to 407 seconds. This likely shows the overhead
of the unrolling in Inox [28], which is especially visible for fast VCs. Figure 2
also shows the distribution of VCs solved by each solver.

We compare the performance of our verified implementation to the origi-
nal [26], the general HashMap of the Scala standard library [24], and an opti-
mized version (denoted Opti) that changes the verified implementation to use
Array[AnyRef] for _values. We use Long as the type of stored values. We con-
sider three scenarios: looking up keys in a pre-populated map, populating the
map first, then looking up keys, and populating the map with all pairs, removing
half of the keys, and inserting all pairs again before looking up keys. Results are
in Figure 3 and Figure 4. Our verified LongMap is around 1.5× slower than the

8 S. Chassot, V. Kunčak

0 20000 40000 60000
N

1.0

1.2

1.4

1.6

1.8

2.0
Ti
m
e

Verified
Original
Opti
HashMap

0 2 4 6 8
N 1e6

1.0

1.2

1.4

1.6

1.8

2.0

Ti
m
e

Verified
Original
Opti
HashMap

Fig. 4. Total time to lookup N keys and: (left) insert 215 pairs with initial capacity
217, or (right) insert 222 pairs, remove 221, and insert 222 again, with initial capacity
of 16. The black vertical line shows 215 (left) and 222 (right). The error bars show the
95% CI. The time on the y-axis is normalized with respect to the original map.

original implementation for lookups only, see Figure 3 (left). The performance
gap is similar when taking the population process into account (Figure 3 (right)).
We argue that this is acceptable. Indeed, the LongMap is the fastest map we know
in the Scala ecosystem. As shown by Figure 4, the performance of our verified
implementation is comparable to the Scala HashMap (better in some scenarios).

Consequences of Adapting for Verifiability. To understand the impact
of pointer indirection in the _values array (Section 2.1), we modified our ver-
ified implementation to use Array[AnyRef] like the original (abandoning the
proof). The results are shown as Opti in the figures, with performance close
to the original one, indicating that this indirection was indeed responsible for
the overhead. Similarly, in our version, creating _values and _keys arrays re-
lies on Array.fill, which writes all values and is slower than constructing an
array of nulls in the original implementation. Therefore, the verified repack

operation is slower than the original, see Figure 4 (right). As shown by Figure 4
(left), without resizing, the performance is similar to HashMap, suggesting the
impact of Array.fill. Calls to repack are infrequent, so this performance loss
is limited. Finally, as witnessed by the Opti implementation performance being
close to the original, there is limited performance impact of the way seek func-
tions pass information to the caller, and of counter checks for loop termination
(Section 2.1).

5 Conclusion

We verified LongMap from the Scala standard library, a mutable hash table with
Long keys, employing open addressing and non-linear probing. This led us to
identify and fix a bug in the original library implementation. The performance
evaluation of our verified implementation against the original shows a slowdown
of around 1.5. The changes we needed to perform for verifiability point to direc-
tions for further improving verification support for efficient Scala constructs.

Verifying a Realistic Mutable Hash Table 9

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification – The KeY Book, Lecture Notes in Com-
puter Science, vol. 10001. Springer International Publishing, Cham (2016). https:
//doi.org/10.1007/978-3-319-49812-6, http://link.springer.com/10.1007/
978-3-319-49812-6

2. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength smt solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 415–442. Springer International Pub-
lishing, Cham (2022)

3. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_

14, https://doi.org/10.1007/978-3-642-22110-1_14

4. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular Verification of
JML Contracts Using Bounded Model Checking. In: Margaria, T., Steffen, B.
(eds.) Leveraging Applications of Formal Methods, Verification and Validation:
Verification Principles, vol. 12476, pp. 60–80. Springer International Publish-
ing, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4_4, http://

link.springer.com/10.1007/978-3-030-61362-4_4, series Title: Lecture Notes
in Computer Science

5. Bucev, M., Kunčak, V.: Formally verified Quite OK Image format. In: Formal
Methods in Computer-Aided Design (FMCAD) (2022)

6. Chassot, S., Kunčak, V.: Verifying a Realistic Mutable Hash Table Case
Study (Short Paper) (Artifact) (Apr 2024). https://doi.org/10.5281/zenodo.
11079220, https://doi.org/10.5281/zenodo.11079220

7. Commit: New mutable hash map with long keys, https://github.com/scala/
scala/commit/05aedd936e7e7bcf0fa2443abd58b39732f173a9

8. De Boer, M., De Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Formal
Specification and Verification of JDK’s Identity Hash Map Implementation. Formal
Aspects of Computing 35(3), 18:1–18:26 (Sep 2023). https://doi.org/10.1145/
3594729, https://dl.acm.org/doi/10.1145/3594729

9. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. p. 337–340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008), https://doi.
org/10.1007/978-3-540-78800-3_24

10. Guilloud, S., Bucev, M., Milovančević, D., Kunčak, V.: Formula normalizations in
verification. In: Computer-Aided Verification (CAV) (2023)

11. Guttag, J.V.: Abstract data type and the development of data structures. Com-
mun. ACM 20(6), 396–404 (1977). https://doi.org/10.1145/359605.359618

12. Hamza, J., Felix, S., Kunčak, V., Nussbaumer, I., Schramka, F.: From verified Scala
to STIX file system embedded code using Stainless. In: NASA Formal Methods
(NFM). p. 18 (2022), http://infoscience.epfl.ch/record/292424

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
http://link.springer.com/10.1007/978-3-319-49812-6
http://link.springer.com/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
http://link.springer.com/10.1007/978-3-030-61362-4_4
http://link.springer.com/10.1007/978-3-030-61362-4_4
https://doi.org/10.5281/zenodo.11079220
https://doi.org/10.5281/zenodo.11079220
https://doi.org/10.5281/zenodo.11079220
https://doi.org/10.5281/zenodo.11079220
https://doi.org/10.5281/zenodo.11079220
https://github.com/scala/scala/commit/05aedd936e7e7bcf0fa2443abd58b39732f173a9
https://github.com/scala/scala/commit/05aedd936e7e7bcf0fa2443abd58b39732f173a9
https://doi.org/10.1145/3594729
https://doi.org/10.1145/3594729
https://doi.org/10.1145/3594729
https://doi.org/10.1145/3594729
https://dl.acm.org/doi/10.1145/3594729
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/359605.359618
https://doi.org/10.1145/359605.359618
http://infoscience.epfl.ch/record/292424

10 S. Chassot, V. Kunčak

13. Hamza, J., Voirol, N., Kunčak, V.: System fr: formalized foundations for the
stainless verifier. Proc. ACM Program. Lang. 3(OOPSLA) (oct 2019). https:

//doi.org/10.1145/3360592, https://doi.org/10.1145/3360592
14. Hance, T., Lattuada, A., Hawblitzel, C., Howell, J., Johnson, R., Parno, B.: Storage

Systems are Distributed Systems (So Verify Them That Way!). In: 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (2020)

15. Harms, D.E., Weide, B.W.: Copying and swapping: Influences on the design of
reusable software components. IEEE Trans. Software Eng. 17(5), 424–435 (1991).
https://doi.org/10.1109/32.90445

16. Jackson, D., Damon, C.A.: Elements of style: analyzing a software design fea-
ture with a counterexample detector. ACM SIGSOFT Software Engineering Notes
21(3), 239–249 (May 1996). https://doi.org/10.1145/226295.226322, https:
//dl.acm.org/doi/10.1145/226295.226322

17. Jahob Hashtables Codebase, https://github.com/epfl-lara/jahob/tree/

master/examples/containers/hashtable
18. Kuncak, V.: Modular Data Structure Verification. Ph.D. thesis, EECS Department,

Massachusetts Institute of Technology (February 2007), http://hdl.handle.net/
1721.1/38533

19. Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for
higher-order functions with memoization. ACM SIGPLAN Notices 52(1), 330–
343 (Jan 2017). https://doi.org/10.1145/3093333.3009874, https://dl.acm.
org/doi/10.1145/3093333.3009874

20. Milovančević, D., Kunčak, V.: Proving and disproving equivalence of functional
programming assignments. In: ACM SIGPLAN Conf. Programming Language De-
sign and Implementation (PLDI) (2023)

21. de Moura, L.M., Bjørner, N.S.: Generalized, efficient array decision procedures.
In: Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA. pp. 45–
52. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351142

22. Nipkow, T., Wenzel, M., Paulson, L.C., Goos, G., Hartmanis, J., Van Leeuwen,
J. (eds.): Isabelle/HOL, Lecture Notes in Computer Science, vol. 2283. Springer,
Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9, http://

link.springer.com/10.1007/3-540-45949-9
23. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. For-

mal Aspects of Computing 30(5), 495–523 (Sep 2018). https://doi.org/10.1007/
s00165-017-0435-1, https://doi.org/10.1007/s00165-017-0435-1

24. HashMap Scala Standard Library, https://scala-lang.org/api/3.3.1/scala/
collection/mutable/HashMap.html

25. LongMap Specification, https://github.com/scala/scala/blob/

263e5bd60d9c3947d8d17b7d8769a4b94f6865c7/src/library/scala/

collection/mutable/LongMap.scala#L36
26. LongMap Implementation - Standard Library, https://github.com/scala/

scala/blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/

scala/collection/mutable/LongMap.scala
27. Team, T.C.D.: The Coq Proof Assistant (Jun 2023). https://doi.org/10.5281/

ZENODO.1003420, https://zenodo.org/record/1003420, language: en
28. Voirol, N.C.Y.: Verified functional programming p. 229 (2019). https://doi.org/

https://doi.org/10.5075/epfl-thesis-9479
29. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-

tures. In: ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation (PLDI) (2008)

https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1109/32.90445
https://doi.org/10.1109/32.90445
https://doi.org/10.1145/226295.226322
https://doi.org/10.1145/226295.226322
https://dl.acm.org/doi/10.1145/226295.226322
https://dl.acm.org/doi/10.1145/226295.226322
https://github.com/epfl-lara/jahob/tree/master/examples/containers/hashtable
https://github.com/epfl-lara/jahob/tree/master/examples/containers/hashtable
http://hdl.handle.net/1721.1/38533
http://hdl.handle.net/1721.1/38533
https://doi.org/10.1145/3093333.3009874
https://doi.org/10.1145/3093333.3009874
https://dl.acm.org/doi/10.1145/3093333.3009874
https://dl.acm.org/doi/10.1145/3093333.3009874
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://link.springer.com/10.1007/3-540-45949-9
http://link.springer.com/10.1007/3-540-45949-9
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1007/s00165-017-0435-1
https://scala-lang.org/api/3.3.1/scala/collection/mutable/HashMap.html
https://scala-lang.org/api/3.3.1/scala/collection/mutable/HashMap.html
https://github.com/scala/scala/blob/263e5bd60d9c3947d8d17b7d8769a4b94f6865c7/src/library/scala/collection/mutable/LongMap.scala#L36
https://github.com/scala/scala/blob/263e5bd60d9c3947d8d17b7d8769a4b94f6865c7/src/library/scala/collection/mutable/LongMap.scala#L36
https://github.com/scala/scala/blob/263e5bd60d9c3947d8d17b7d8769a4b94f6865c7/src/library/scala/collection/mutable/LongMap.scala#L36
https://github.com/scala/scala/blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/scala/collection/mutable/LongMap.scala
https://github.com/scala/scala/blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/scala/collection/mutable/LongMap.scala
https://github.com/scala/scala/blob/948ed0b60466803f404d5f24a3afc0a89c06ffc1/src/library/scala/collection/mutable/LongMap.scala
https://doi.org/10.5281/ZENODO.1003420
https://doi.org/10.5281/ZENODO.1003420
https://doi.org/10.5281/ZENODO.1003420
https://doi.org/10.5281/ZENODO.1003420
https://zenodo.org/record/1003420
https://doi.org/https://doi.org/10.5075/epfl-thesis-9479
https://doi.org/https://doi.org/10.5075/epfl-thesis-9479
https://doi.org/https://doi.org/10.5075/epfl-thesis-9479
https://doi.org/https://doi.org/10.5075/epfl-thesis-9479

	Verifying a Realistic Mutable Hash Table

