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Introduction
Motivation
• Space exploration needs serialisers for 

communication
• Writing by hand is hard and bug-prone

• E.g., Solar orbiter: endianness mismatch and different 
paddings required patching after launch

• Correctness is critical: bugs could lead to loss of 
data or vessel

• → Generate the code
• Compile from ASN.1 format
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Introduction
ASN.1 (Abstract Syntax Notation One)
• Describe datastructures for serialisation
• Different binary encodings (e.g., ACN, BER, PUR, EPUR, DER)
• ACN: customise the binary format → to support legacy formats
• Widely used in telecommunications, notably HTTPS certificates 

and 5G protocols

Several ESA missions use ASN1SCC compiler
• Takes ASN.1 description and generates code for encoding & decoding

3



ASN.1 Example: Abstract Syntax
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ACN Example: (Concrete) Binary Format
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ASN1SCC Background

Compiler for ASN.1/ACN format
• Backends for C and Ada
Generated code: combination of static primitives
• Datastructure: BitStream
• Encoder/decoder for basic types (Codecs)

→ We added a verified Scala backend
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┌───────────────────┐
╔═╡ stainless summary ╞════════════════════════════════════════════════════════════════════════════════════╗
║ └───────────────────┘                                                                                    ║
║ zip.scala:5:5:     zip  non-negative measure                                      valid  U:smt-cvc5  0.0 ║
║ zip.scala:9:11:    zip  postcondition                                             valid  U:smt-cvc5  0.1 ║
║ zip.scala:9:24:    zip  measure decreases                                         valid  U:smt-cvc5  0.0 ║
║ zip.scala:9:24:    zip  precond. (call zip((scrut._1.t): @DropVCs , (scrut._...)  valid  U:smt-cvc5  0.1 ║
║ zip.scala:11:15:   zip  postcondition                                             valid  U:smt -cvc5  0.0 ║
╟┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄╢
║ total: 5    valid: 5    (0 from cache, 0 trivial) invalid: 0    unknown: 0    time:    0.29       ║

╚══════════════════════════════════════════════════════════════════════════════════════════════════════════╝

Stainless: Automated Proof
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warning: Found counter-example:
warning:   xs: List[Int]          -> Cons[Int](0, Nil[Int]())

ys: List[Boolean] -> Nil[Boolean]()



Stainless: verification framework for Scala
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Stainless: verification framework for Scala
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Verification approach

2 main steps
1. Runtime safety (no crashes, termination) (levels 1, 2, and 3 in 

the paper)
• Code accepted by Stainless
• Automatically generated verification conditions (e.g., termination, in-

bound accesses, overflows, division by zero, casts)
• To prove in-bound accesses → add specification about how many bits 

written/read
2. Semantic correctness (level 4 in the paper)

• Add specification about invertibility
For static primitives and generated code
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Verification: Static Primitives
BitStream Datastructure
Codec ACN
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BitStream: Background
• Datastructure to represent a stream of bits for decoding and 

encoding
• Mutable array of bytes, with a moving cursor
• Offers operations to read and write at the bit and at the byte level
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BitStream: Verification

Step 0: Write the Scala backend BitStream
• Translation of the C backend
• With test suites
Step 1: Prove runtime safety
• Refactor to conform to the Scala fragment supported by Stainless
• Prove in-bound accesses, overflow absence, termination
→ Add specification & proof: number of bits written/read by each 
function
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BitStream: appendBitsMSBFirst Example
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BitStream: Verification

Step 2: semantic correctness
• Prove the invertibility
• i.e., decoding after encoding in the bit stream reads the written 

value
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BitStream: appendBitsMSBFirst Example
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appendBitsMSBFirst: Induction Hypothesis

• Invertibility of appendBitsMSBFirst proved by induction
• Array of bytes → difficult to apply induction hypothesis

• Not an issue to prove the runtime safety as we proved only how 
many bits were written
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Detour: List of Bits

• Applying the IH is natural
• Then prove: same list of Booleans => same bits read in array
• → Inductive structures better suited for inductive proofs
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ACN Codec Primitives

Also primitive encoding/decoding functions
• E.g.: 64-bits integer in interval [min, max]

Verification: same approach
Relies heavily on BitStream correctness
• IEEE754 real numbers not verified (no float support in Stainless)
• Strings related functions not verified for invertibility, rarely used
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Loop Unrolling Trick

• Converts unsigned integer to signed one, considering only 
uintSizeInBytes bytes
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Automatic proof
Hard invariant



Static Primitives: LOC Statistics

BitStream
• Total LOC: 3700 lines (proof + implementation)
• Ratio: ~ 5:1
ACN Codec
• Total LOC: 4000 lines (proof + implementation)
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Verification: Generated Code
Tailoring of the Compiler for Verification
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Verification: Generated Code

Same high-level idea than for static code

However: Generate proof automatically

→ Tailor the generated code to verification
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Tailoring: Translation to Functional Code

ASN1SCC existing backends (C, Ada) use in-place mutation for 
decoding
Incompatible with the aliasing policy of Stainless
Solution: Functional code
• Return decoded values
• How to treat SEQUENCE OF?

• Return a new array?
• Append decoded elements to a collection?

24



Tailoring: Replace Arrays by Vectors

Problem: SEQUENCE OF within SEQUENCE OF
• → Arrays within arrays
• Incompatible with aliasing policy
Solution: Replace Arrays by a wrapped Scala Vector
• Immutable
• Append/prepend/init/tail: O(1) amortised, worst O(log n)
• Random accesses: O(log n) → Acceptable
• Specified with List for verification
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Verification: Generated Code

Step 1: runtime safety
• Same approach as for static primitives
• Unclear how many bits to read → generate size functions
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Verification: Generated Code

Step 2: semantic correctness
• Same approach as for the static code

• Relies heavily on BitStream and Codec proven properties

• Generated proof 
• Generate specifications
• Generate lemmas
• Generate lemma applications

• Verified automatically
See paper for more details
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Verified Properties and Statistics
Experimental Results
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Packet Formats

Test with real-world packet formats
• PUS-C Services (Packet Utilisation Standard C)

• 312 packet formats
• Standard packet specification used by ESA satellites and ground 

control stations ("ECSS-E-ST-70-41C")
• Used by e.g. CHEOPS (exo-planets transits observation) and Proba-3 

(demonstration of satellites formation flight) missions

• TC-Packet
• Telecommand packet format for satellites used by ESA
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Verification conditions statistics

335,149 VCs total
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Largest verification 
project with 
Stainless to date



Lessons
Bugs
Takeaway
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Bugs found
1. Incorrect treatment of NaN in C and Ada backends

• Failing assertions for NaN bit pattern
• Found during translation C → Scala

2. SEQUENCE with alignment requirement
• Wrong bit paddings 
• Found during translation C → Scala

3. Erroneous decoding of some CHOICE pattern
• When optional and specified with ACN codec
• Found while writing proof

4. 7-bit Strings missing validation
• Missing range checks for 7-bit strings represented as 8-bit constrained in [0, 127]
• Found with Stainless

→ All bugs are reproducible with Stainless
→ All those bugs are now fixed in all backends
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Every step counts

Lots of refactoring needed to verify existing code
• Comply with tool, simplify reasoning about algorithms, …
• → Led to discovering bugs

Stainless generates these VCs automatically
• Termination, absence of overflow, in-bounds accesses, …
→ Some verification without writing specifications
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Every step of the process provides some valuable guarantees



Conclusion

New verified Scala backend for ASN1SCC compiler used by ESA 
missions
• Static runtime library subset used by PUS-C services verified

• Crash free
• Invertible (except for real numbers and strings operations)

• Generated proof with the generated Scala code
• Generated code verified to be 

• Crash free
• Invertible for SEQUENCE encoding

→ Better reliability of Space communications

34samuel.chassot@epfl.ch



Backup slides
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Verification conditions statistics

• 2 invalid VCs
• Precondition checks in 

IA5String encoding
• Size of null-terminating 

strings
• Adding a check for Scala 

backend would impact 
Ada and C backend
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Verification conditions statistics

• 2 timeout VCs
• Same nature except 

Stainless could not find a 
counterexample
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The Value of Refactoring

Lots of refactoring needed to verify existing code
• Comply with tool, simplify reasoning about algorithms, …
Stainless generates VCs automatically
• Termination, absence of overflow, in-bounds accesses, …
→Some verification without writing specifications
Can make verification a lot easier like with the loop unrolling trick
• Sometimes easier to rewrite than verify existing
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