
To Space and Back:
Verified Serialisation

Formally Verifiable Generated ASN.1/ACN Encoders and Decoders:
A Case Study

1

Mario Bucev, Samuel Chassot, Simon Felix, Filip Schramka,
and Viktor Kunčak

Introduction
Motivation
• Space exploration needs serialisers for

communication
• Writing by hand is hard and bug-prone

• E.g., Solar orbiter: endianness mismatch and different
paddings required patching after launch

• Correctness is critical: bugs could lead to loss of
data or vessel

• → Generate the code
• Compile from ASN.1 format

2

Introduction
ASN.1 (Abstract Syntax Notation One)
• Describe datastructures for serialisation
• Different binary encodings (e.g., ACN, BER, PUR, EPUR, DER)
• ACN: customise the binary format → to support legacy formats
• Widely used in telecommunications, notably HTTPS certificates

and 5G protocols

Several ESA missions use ASN1SCC compiler
• Takes ASN.1 description and generates code for encoding & decoding

3

ASN.1 Example: Abstract Syntax

4

ACN Example: (Concrete) Binary Format

5

ASN1SCC Background

Compiler for ASN.1/ACN format
• Backends for C and Ada
Generated code: combination of static primitives
• Datastructure: BitStream
• Encoder/decoder for basic types (Codecs)

→ We added a verified Scala backend

6

┌───────────────────┐
╔═╡ stainless summary ╞══╗
║ └───────────────────┘ ║
║ zip.scala:5:5: zip non-negative measure valid U:smt-cvc5 0.0 ║
║ zip.scala:9:11: zip postcondition valid U:smt-cvc5 0.1 ║
║ zip.scala:9:24: zip measure decreases valid U:smt-cvc5 0.0 ║
║ zip.scala:9:24: zip precond. (call zip((scrut._1.t): @DropVCs , (scrut._...) valid U:smt-cvc5 0.1 ║
║ zip.scala:11:15: zip postcondition valid U:smt -cvc5 0.0 ║
╟┄┄╢
║ total: 5 valid: 5 (0 from cache, 0 trivial) invalid: 0 unknown: 0 time: 0.29 ║

╚══╝

Stainless: Automated Proof

7

warning: Found counter-example:
warning: xs: List[Int] -> Cons[Int](0, Nil[Int]())

ys: List[Boolean] -> Nil[Boolean]()

Stainless: verification framework for Scala

8

Source Frontend

Stainless
extractor

Dotty AST

Stainless

Stainless
AST

Tree
transformers

Stainless: verification framework for Scala

9

Source Frontend

Stainless
extractor

Dotty AST Tree
transformers

Verification conditions
generator based on

SystemFR type checking

Stainless AST Inox unrolling engine

Inox AST

Inox
Z3

cvc5

Princess

SMT Solvers

[Jad Hamza, Nicolas Voirol, and Viktor Kunčak.

System FR: Formalized foundations for the
Stainless verifier. Proc. ACM Program. Lang,

(OOPSLA), November 2019.]

[Philippe Suter, et al. Satisfiability modulo recursive programs.

In Static Analysis Symposium (SAS), 2011.]
[Nicolas Voirol, et al. Counter-example complete verification for

higher-order functions. In Scala Symposium, 2015.]

Stainless
AST

Stainless

Verification approach

2 main steps
1. Runtime safety (no crashes, termination) (levels 1, 2, and 3 in

the paper)
• Code accepted by Stainless
• Automatically generated verification conditions (e.g., termination, in-

bound accesses, overflows, division by zero, casts)
• To prove in-bound accesses → add specification about how many bits

written/read
2. Semantic correctness (level 4 in the paper)

• Add specification about invertibility
For static primitives and generated code

10

Verification: Static Primitives
BitStream Datastructure
Codec ACN

11

BitStream: Background
• Datastructure to represent a stream of bits for decoding and

encoding
• Mutable array of bytes, with a moving cursor
• Offers operations to read and write at the bit and at the byte level

12

BitStream: Verification

Step 0: Write the Scala backend BitStream
• Translation of the C backend
• With test suites
Step 1: Prove runtime safety
• Refactor to conform to the Scala fragment supported by Stainless
• Prove in-bound accesses, overflow absence, termination
→ Add specification & proof: number of bits written/read by each
function

13

BitStream: appendBitsMSBFirst Example

14

BitStream: Verification

Step 2: semantic correctness
• Prove the invertibility
• i.e., decoding after encoding in the bit stream reads the written

value

15

BitStream: appendBitsMSBFirst Example

16

appendBitsMSBFirst: Induction Hypothesis

• Invertibility of appendBitsMSBFirst proved by induction
• Array of bytes → difficult to apply induction hypothesis

• Not an issue to prove the runtime safety as we proved only how
many bits were written

17

Detour: List of Bits

• Applying the IH is natural
• Then prove: same list of Booleans => same bits read in array
• → Inductive structures better suited for inductive proofs

18

ACN Codec Primitives

Also primitive encoding/decoding functions
• E.g.: 64-bits integer in interval [min, max]

Verification: same approach
Relies heavily on BitStream correctness
• IEEE754 real numbers not verified (no float support in Stainless)
• Strings related functions not verified for invertibility, rarely used

19

Loop Unrolling Trick

• Converts unsigned integer to signed one, considering only
uintSizeInBytes bytes

20

Automatic proof
Hard invariant

Static Primitives: LOC Statistics

BitStream
• Total LOC: 3700 lines (proof + implementation)
• Ratio: ~ 5:1
ACN Codec
• Total LOC: 4000 lines (proof + implementation)

21

Verification: Generated Code
Tailoring of the Compiler for Verification

22

Verification: Generated Code

Same high-level idea than for static code

However: Generate proof automatically

→ Tailor the generated code to verification

23

Tailoring: Translation to Functional Code

ASN1SCC existing backends (C, Ada) use in-place mutation for
decoding
Incompatible with the aliasing policy of Stainless
Solution: Functional code
• Return decoded values
• How to treat SEQUENCE OF?

• Return a new array?
• Append decoded elements to a collection?

24

Tailoring: Replace Arrays by Vectors

Problem: SEQUENCE OF within SEQUENCE OF
• → Arrays within arrays
• Incompatible with aliasing policy
Solution: Replace Arrays by a wrapped Scala Vector
• Immutable
• Append/prepend/init/tail: O(1) amortised, worst O(log n)
• Random accesses: O(log n) → Acceptable
• Specified with List for verification

25

Verification: Generated Code

Step 1: runtime safety
• Same approach as for static primitives
• Unclear how many bits to read → generate size functions

26

Verification: Generated Code

Step 2: semantic correctness
• Same approach as for the static code

• Relies heavily on BitStream and Codec proven properties

• Generated proof
• Generate specifications
• Generate lemmas
• Generate lemma applications

• Verified automatically
See paper for more details

27

Verified Properties and Statistics
Experimental Results

28

Packet Formats

Test with real-world packet formats
• PUS-C Services (Packet Utilisation Standard C)

• 312 packet formats
• Standard packet specification used by ESA satellites and ground

control stations ("ECSS-E-ST-70-41C")
• Used by e.g. CHEOPS (exo-planets transits observation) and Proba-3

(demonstration of satellites formation flight) missions

• TC-Packet
• Telecommand packet format for satellites used by ESA

29

Verification conditions statistics

335,149 VCs total

30

Largest verification
project with
Stainless to date

Lessons
Bugs
Takeaway

31

Bugs found
1. Incorrect treatment of NaN in C and Ada backends

• Failing assertions for NaN bit pattern
• Found during translation C → Scala

2. SEQUENCE with alignment requirement
• Wrong bit paddings
• Found during translation C → Scala

3. Erroneous decoding of some CHOICE pattern
• When optional and specified with ACN codec
• Found while writing proof

4. 7-bit Strings missing validation
• Missing range checks for 7-bit strings represented as 8-bit constrained in [0, 127]
• Found with Stainless

→ All bugs are reproducible with Stainless
→ All those bugs are now fixed in all backends

32

Every step counts

Lots of refactoring needed to verify existing code
• Comply with tool, simplify reasoning about algorithms, …
• → Led to discovering bugs

Stainless generates these VCs automatically
• Termination, absence of overflow, in-bounds accesses, …
→ Some verification without writing specifications

33

Every step of the process provides some valuable guarantees

Conclusion

New verified Scala backend for ASN1SCC compiler used by ESA
missions
• Static runtime library subset used by PUS-C services verified

• Crash free
• Invertible (except for real numbers and strings operations)

• Generated proof with the generated Scala code
• Generated code verified to be

• Crash free
• Invertible for SEQUENCE encoding

→ Better reliability of Space communications

34samuel.chassot@epfl.ch

Backup slides

35

Verification conditions statistics

• 2 invalid VCs
• Precondition checks in

IA5String encoding
• Size of null-terminating

strings
• Adding a check for Scala

backend would impact
Ada and C backend

36

Verification conditions statistics

• 2 timeout VCs
• Same nature except

Stainless could not find a
counterexample

37

The Value of Refactoring

Lots of refactoring needed to verify existing code
• Comply with tool, simplify reasoning about algorithms, …
Stainless generates VCs automatically
• Termination, absence of overflow, in-bounds accesses, …
→Some verification without writing specifications
Can make verification a lot easier like with the loop unrolling trick
• Sometimes easier to rewrite than verify existing

38

	Slide 1: To Space and Back: Verified Serialisation
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: ASN.1 Example: Abstract Syntax
	Slide 5: ACN Example: (Concrete) Binary Format
	Slide 6: ASN1SCC Background
	Slide 7: Stainless: Automated Proof
	Slide 8: Stainless: verification framework for Scala
	Slide 9: Stainless: verification framework for Scala
	Slide 10: Verification approach
	Slide 11: Verification: Static Primitives
	Slide 12: BitStream: Background
	Slide 13: BitStream: Verification
	Slide 14: BitStream: appendBitsMSBFirst Example
	Slide 15: BitStream: Verification
	Slide 16: BitStream: appendBitsMSBFirst Example
	Slide 17: appendBitsMSBFirst: Induction Hypothesis
	Slide 18: Detour: List of Bits
	Slide 19: ACN Codec Primitives
	Slide 20: Loop Unrolling Trick
	Slide 21: Static Primitives: LOC Statistics
	Slide 22: Verification: Generated Code
	Slide 23: Verification: Generated Code
	Slide 24: Tailoring: Translation to Functional Code
	Slide 25: Tailoring: Replace Arrays by Vectors
	Slide 26: Verification: Generated Code
	Slide 27: Verification: Generated Code
	Slide 28: Verified Properties and Statistics
	Slide 29: Packet Formats
	Slide 30: Verification conditions statistics
	Slide 31: Lessons
	Slide 32: Bugs found
	Slide 33: Every step counts
	Slide 34: Conclusion
	Slide 35: Backup slides
	Slide 36: Verification conditions statistics
	Slide 37: Verification conditions statistics
	Slide 38: The Value of Refactoring

