To Space and Back:
Verified Serialisation

Formally Verifiable Generated ASN.1/ACN Encoders and Decoders:
A Case Study

Mario Bucev, Samuel Chassot, Simon Felix, Filip Schramka,
and Viktor Kuncak

Introduction

Motivation

* Space exploration needs serialisers for
communication

* Writing by hand is hard and bug-prone

* E.g., Solar orbiter: endianness mismatch and different
paddings required patching after launch

* Correctness is critical: bugs could lead to loss of
data or vessel

« = Generate the code

* Compile from ASN.1 format

Introduction

ASN.1 (Abstract Syntax Notation One)

* Describe datastructures for serialisation

* Different binary encodings (e.g., ACN, BER, PUR, EPUR, DER)
 ACN: customise the binary format = to support legacy formats

* Widely used in telecommunications, notably HTTPS certificates
and 5G protocols

Several ESA missions use ASN1SCC compiler
* Takes ASN.1 description and generates code for encoding & decoding

ASN.1 Example: Abstract Syntax

::= INTEGER (-) -- 16 bits
: := SEQUENCE
INTEGER (), -- constrained range
REAL, -- floating-point

OCTET STRING ((10)) -- 10 bytes

ACN Example: (Concrete) Binary Format

[size 16, encoding twos-complement, endianness little]

[1{
[1,

[size 9, encoding pos-int, align-to-next dword], -- aligned to 32 bits
[encoding IEEE754-1985-64],

[]

ASN1SCC Background

Compiler for ASN.1/ACN format
e Backends for C and Ada

Generated code: combination of static primitives
* Datastructure: BitStream

* Encoder/decoder for basic types (Codecs)

- We added a verified Scala backend

Stainless: Automated Proof

def (xs: List[Int], : List[Boolean]): List[(Int, Boolean)]

require(xs. <= ys.)
(xs,) match
case ((X,), (Y,)) =>

(065 v), (xs0,))

case => Nil()

} C (=> . (=> .) ——

{

==| stainless summary :

zip.scala:9:11: zip postcondition valid U:smt-cKCS 0.1 ||

zip.scala:9:24: zip @sﬂ@lﬁgéa&gund cou nter‘@?ﬁ@ rlpsR

total: 5 wvalid: 5 (0 from cache, O trivial) invalid: 0 unknown: 0 time: 0.29

zip.scala:5:5: zip non-negative measure valid U:smt-cvc5 0.0 ||

€ocs 0.0 |
Zip-sca:aj9:2_4:_ zip W-th?ip(ksrytuls@[m}pVCS rl(_scm?-LDwa{lln (OsNil[Int]())
Pecolitlast @p posicondlton o | ist[Boolean] -S> Nil[Boolean)()

Stainless: verification framework for Scala

Stainless

lll
. L 4
* L 4

Stainless
AST
ﬁ

Dotty AST

* *
* o®
--

Stainless: verification framework for Scala

Verification approach

2 main steps

1. Runtime safety (no crashes, termination) (levels 1, 2, and 3 in
the paper)
* Code accepted by Stainless

 Automatically generated verification conditions (e.g., termination, in-
bound accesses, overflows, division by zero, casts)

* To prove in-bound accesses - add specification about how many bits
written/read

2. Semantic correctness (level 4 in the paper)
* Add specification about invertibility

For static primitives and generated code

10

Verification: Static Primitives

BitStream Datastructure
Codec ACN

BitStream: Background

* Datastructure to represent a stream of bits for decoding and
encoding

* Mutable array of bytes, with a moving cursor
* Offers operations to read and write at the bit and at the byte level

Bit-Level Operations

Encoding Functions Decoding Functions buf 1]0J1]0]OJL1]O]O L]OJLx]x|x
appendBit | appendBitOne, appendBitZero readBit 4
appendNBits, appendNZeroBits, appendNOneBits | readBits currentByte — T
appendBitFromByte readBit .
appendBitsLSBFirst readNBitsLSBFirst currentBit
appendLSBBitsMSBFirst readNLSBBitsMSBFirst
appendBitsMSBFirst readBits] peekBit

Byte-Level Operations
appendPartialByte readPartialByte
appendByte readByte

appendByteArray readByteArray

BitStream: Verification

Step 0: Write the Scala backend BitStream

* Translation of the C backend

* With test suites

Step 1: Prove runtime safety

* Refactor to conform to the Scala fragment supported by Stainless
* Prove in-bound accesses, overflow absence, termination

- Add specification & proof: number of bits written/read by each
function

13

BitStream: appendBitsMSBFirst Example

(_ => // omitted: buffer length preserved

(. ’ ’) ——
((this). . , (this). , (this).) +

14

BitStream: Verification

Step 2: semantic correctness

* Prove the invertibility

* i.e., decoding after encoding in the bit stream reads the written
value

15

BitStream: appendBitsMSBFirst Example

def (: Array| 1, : Long, : Long = 0): Unit = {
(; 3 +) // Loop as tail rec func

val (rl, r2) = (old(this), this)
val = . ()

16

appendBitsMSBFirst: Induction Hypothesis

* Invertibility of appendBitsMSBFirst proved by induction
 Array of bytes - difficult to apply induction hypothesis

olof1]1]0]1]0]0O 1/1/12|0|12|l0f1]0
1 to
readBits(i, to) ='1 1 0 1 0 O 1110@000@@
readBits(i+1, to) = ‘1 0 1 0 O 11100000000

* Not an issue to prove the runtime safety as we proved only how
many bits were written

17

Detour: List of Bits

0|01 1/0(1]0]|0 1{1(12(0(12]0|1]|0
1 to
rdBitsLst(i, to) = Cons(1,List(1, 0, 1, 0O, O, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0))
rdBitsLst(i+1, to) = List(1, ©, 1, 6, 6, 1,1, 1, 06, 6, 6, 0, O, 0, 0)

* Applying the IH is natural
* Then prove: same list of Booleans => same bits read in array
* = Inductive structures better suited for inductive proofs

18

ACN Codec Primitives

Also primitive encoding/decoding functions
* E.g.: 64-bits integer in interval [min, max]

def (v:) :) :): Unit
def (: , :) :

Verification: same approach

Relies heavily on BitStream correctness

* |EEE754 real numbers not verified (no float support in Stainless)
* Strings related functions not verified for invertibility, rarely used

19

Loop Unrolling Trick

def (v: , : Int): Long = {
require(>= 1 && <= 9)
/] ...
}

* Converts unsigned integer to signed one, considering only
uintSizelnBytes bytes

Automatic proof

Hard.i nt
L (<= 7) = (7)
, _ L (<= 6) = (6)
Vﬁ'fl P Int =7 . Lf(<= 5) |= (5)
while 1 >= : » Lf (<= 4) & (4)
1= (1) LF(<= 3) = (3)
=] L (<= 2) = (2)
L (<= 1) = (1)

Static Primitives: LOC Statistics

BitStream

* Total LOC: 3700 lines (proof + implementation)
* Ratio: ~ 5:1

ACN Codec

* Total LOC: 4000 lines (proof + implementation)

21

Verification: Generated Code

Tailoring of the Compiler for Verification

Verification: Generated Code

Same high-level idea than for static code
However: Generate proof automatically

- Tailor the generated code to verification

23

Tailoring: Translation to Functional Code

ASN1SCC existing backends (C, Ada) use in-place mutation for
decoding

Incompatible with the aliasing policy of Stainless
Solution: Functional code

* Return decoded values
e How to treat SEQUENCE OF?

* Return a new array?
* Append decoded elements to a collection?

24

Tailoring: Replace Arrays by Vectors

Problem: SEQUENCE OF within SEQUENCE OF

= Arrays within arrays

* Incompatible with aliasing policy

Solution: Replace Arrays by a wrapped Scala Vector

* Immutable

* Append/prepend/init/tail: O(1) amortised, worst O(log n)
« Random accesses: O(log n) > Acceptable

* Specified with List for verification

25

END

Verification: Generated Code

Step 1: runtime safety
* Same approach as for static primitives

e Unclear how many bits to read = generate size functions

_ def (): Long = {
this match {

SEQUENCE case o e () => (
INTEGER, val — * (
INTEGER +

case . () =>
INTEGER oS () +
}
}. { (: Long) => (<=) & (<=) }

26

Verification: Generated Code

Step 2: semantic correctness
« Same approach as for the static code
* Relies heavily on BitStream and Codec proven properties

* Generated proof
* Generate specifications
* Generate lemmas
* Generate lemma applications

* Verified automatically
See paper for more details

27

Verified Properties and Statistics

Experimental Results

Packet Formats

Test with real-world packet formats

* PUS-C Services (Packet Utilisation Standard C)

* 312 packet formats

 Standard packet specification used by ESA satellites and ground
control stations ("ECSS-E-ST-70-41C")

* Used by e.g. CHEOPS (exo-planets transits observation) and Proba-3
(demonstration of satellites formation flight) missions

e TC-Packet

* Telecommand packet format for satellites used by ESA

29

Verification conditions statistics

335,149 VCs total

Largest verification
project with
Stainless to date

Library PUS-C services TC-Packet
VCs #V (H#FU | #I1 #V #U|H#1 #V |#U #1
Preconditions |4,252 |0 0 152,201 |1 2 529 0 0
Overflows/casts | 936 0 0 182,037 |0 0 230 0 0
Assertions 544 0 0 23,284 |0 0 167 0 0
Postcondition | 443 0 0 122,365 |1 0 |30 0 0
Arithmetic ops | 183 0 0 3,711 0 0 0 0 0
Array access 181 0 0O |0 0 0 |0 0 0
Measures 132 0 0 [2,796 0 0 |0 0 0
Class invariant |54 0 0 1,722 0 0 |0 0 0
Match exh. 39 0 0 [38,283 |0 0 101 0 0
Pos. array size |5 0 0 0 0 0 0 0 0
Miscellaneous |2 0 0 |918 0 0 |0 0 0
‘Total 6,771/0 |0 |327,317/2 |2 [1,057/0 |0

30

Lessons

Bugs
Takeaway

Bugs found

1. Incorrecttreatment of NaN in C and Ada backends
* Failing assertions for NaN bit pattern
* Found during translation C = Scala

2. SEQUENCE with alignment requirement
* Wrong bit paddings
* Found during translation C - Scala
3. Erroneous decoding of some CHOICE pattern
* When optional and specified with ACN codec
* Found while writing proof
4. 7-bit Strings missing validation
* Missing range checks for 7-bit strings represented as 8-bit constrained in [0, 127]
* Found with Stainless
-=> All bugs are reproducible with Stainless

= All those bugs are now fixed in all backends

32

Every step counts

Lots of refactoring needed to verify existing code
* Comply with tool, simplify reasoning about algorithms, ...
= Led to discovering bugs

Stainless generates these VCs automatically
* Termination, absence of overflow, in-bounds accesses, ...
- Some verification without writing specifications

Every step of the process provides some valuable guarantees

33

Conclusion

New verified Scala backend for ASN1SCC compiler used by ESA
missions

* Static runtime library subset used by PUS-C services verified
* Crash free
* |Invertible (except for real numbers and strings operations)

* Generated proof with the generated Scala code

e Generated code verified to be

e Crash free
* Invertible for SEQUENCE encoding

- Better reliability of Space communications

samuel.chassot@epfl.ch 34

Backup slides

Verification conditions statistics

e 2 invalid VCs

e Precondition checksin
|A5String encoding

* Size of null-terminating
strings
* Adding a check for Scala

backend would impact
Ada and C backend

Preconditions |4,252 [0 |0

152,201 |1

2

36

Verification conditions statistics

e 2 timeoutVCs

 Same nature except
Stainless could not find a
counterexample

Preconditions 4,252 [0 |0

Postcondition [443 |0 |0

152,201

122,365

1

1

2

37

The Value of Refactoring

Lots of refactoring needed to verify existing code

* Comply with tool, simplify reasoning about algorithms, ...
Stainless generates VCs automatically

 Termination, absence of overflow, in-bounds accesses, ...
—>Some verification without writing specifications

Can make verification a lot easier like with the loop unrolling trick
* Sometimes easier to rewrite than verify existing

38

	Slide 1: To Space and Back: Verified Serialisation
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: ASN.1 Example: Abstract Syntax
	Slide 5: ACN Example: (Concrete) Binary Format
	Slide 6: ASN1SCC Background
	Slide 7: Stainless: Automated Proof
	Slide 8: Stainless: verification framework for Scala
	Slide 9: Stainless: verification framework for Scala
	Slide 10: Verification approach
	Slide 11: Verification: Static Primitives
	Slide 12: BitStream: Background
	Slide 13: BitStream: Verification
	Slide 14: BitStream: appendBitsMSBFirst Example
	Slide 15: BitStream: Verification
	Slide 16: BitStream: appendBitsMSBFirst Example
	Slide 17: appendBitsMSBFirst: Induction Hypothesis
	Slide 18: Detour: List of Bits
	Slide 19: ACN Codec Primitives
	Slide 20: Loop Unrolling Trick
	Slide 21: Static Primitives: LOC Statistics
	Slide 22: Verification: Generated Code
	Slide 23: Verification: Generated Code
	Slide 24: Tailoring: Translation to Functional Code
	Slide 25: Tailoring: Replace Arrays by Vectors
	Slide 26: Verification: Generated Code
	Slide 27: Verification: Generated Code
	Slide 28: Verified Properties and Statistics
	Slide 29: Packet Formats
	Slide 30: Verification conditions statistics
	Slide 31: Lessons
	Slide 32: Bugs found
	Slide 33: Every step counts
	Slide 34: Conclusion
	Slide 35: Backup slides
	Slide 36: Verification conditions statistics
	Slide 37: Verification conditions statistics
	Slide 38: The Value of Refactoring

